
ROMifying a Program for Uploading to ROMX

Converting a program to run under ROMX (or ROMifying) can be a fairly simple task. There are
several different steps you need to take and they depend upon how the program is written. For this
tutorial we will only concern ourselves with machine language programs (those you can BRUN from
a disk or otherwise create as direct 6502 code that resides in a specific location in RAM). This
document pertains only to the original ROMX for Apple II/II+; if you have a ROMXc, ROMXe,
ROMXc+, or ROMX+ please see the document “ROMifying a Program for Uploading to ROMXce+”
instead.

PART I – BASIC PROCESS

To work in ROMX, the code must fit into the 12K of space from $D000-$FFFF. Larger programs can
be handled by splitting across multiple banks but we will not go into that here. If your program uses
any F8 monitor ROM routines, then you need to either duplicate them inside your program or include
some or all of the $F800-$FFFB space in your image (the RESET vector at $FFFC/D will definitely
be changed).

There are two basic ways to ROMify code. The first involves rewriting the code so that it can run
from ROM. This would include:

1. Translating and relocating all code that uses absolute addressing.
2. Separating the code and variable storage and finding a suitable location in RAM for the variables.
3. Removing any self-modifying code or references to any standard ROM addresses
4. Modifying the exit process when the program is terminated.

While this may seem a bit daunting, there is a second method that is far simpler and fortunately will
work for the majority of programs. It works by relocating the entire program to ROM space - AS IS -
with little if any modification. A small loader program is then added that moves the code back into its
original RAM location at launch and then jumps to the starting address of the program. The code then
runs just as if it had been loaded from disk (except that the standard ROM - and possibly DOS -
might not be there).

For the rest of this tutorial we will describe this second method. We will also make the following
assumption: that the code is completely loaded into memory at one time and takes up less than
$2700 bytes (roughly 10K or 40 sectors on disk). This will allow us to keep the entire F8 ROM
code intact. This can also help with running and debugging your code since you’ll have the full power
of the monitor routines to inspect, break, and test your code. Another advantage of this approach is
that you can even test your code in a Language Card or 16K RAM Card (LC) before committing to
ROM. More on that later.

The steps to ROMify such code are then quite simple. We just need to combine the code plus the F8
ROM and the loader program into a single file. The F8 image is modified so that the reset vector
points to our loader code. And the loader code is configured with the starting and ending addresses of
the ROM data as well as the destination address in RAM. Finally, we tell the loader where to go after
the code has been relocated into RAM.

The Image Tutorial.dsk file that accompanies this document has several files for converting a game to
run under ROMX:

DISK VOLUME 254

 A 006 HELLO Standard Apple Language Card Loader
*B 050 INTBASIC Integer Basic to Load into Language Card
*B 034 BREAKOUT Original Breakout Game as downloaded from the INTERNET ARCHIVE
 B 050 BREAKOUT.IMG ROMified image of Breakout
*B 026 CHIPOUT Original Chipout Game as downloaded from the INTERNET ARCHIVE
 B 050 CHIPOUT.IMG ROMified image of Chipout
*B 050 IMAGE TEMPLATE 12K Template Image for building 12K programs (no F8 Monitor ROM)
*B 050 IMAGE TEMPLATE WITH F8 Template Image for building 10K programs (with F8 Monitor ROM)

INTERNET ARCHIVE URL:
https://archive.org/search.php?query=Breakout_19xx____Breakout_19xx___Hires__Chipout_19xx_Twilight_Software

We will start with the IMAGE TEMPLATE WITH F8 file, which has the modified F8 code, loader
program, and a blank area for the remainder of the 12K image file. You can BLOAD this file, move
your program into the blank area, modify the loader parameters, and then BSAVE it back to disk. Or
use the Template source code to add into your own Assembly programs.

Once you have a complete 12K image you can either Move it from RAM or BLOAD into a 16K LC
for testing. Or you can Upload directly into a ROMX bank. We will now show some examples of
how this is done. Since we will be testing on a LC first, you can even try this out using an Emulator
such as Virtual II for the Mac. By the way, this is exactly how the ROMX firmware was developed. If
you are working on real hardware and do not have a 16K RAM card, you can skip those sections and
Upload directly into ROMX.

EXAMPLE #1

Let’s say that we want to Upload into ROMX a Breakout program similar to the original one that
came on cassette with the early Apple II machines. Several such programs can be found online and
one is included here on the Image Tutorial.dsk as BREAKOUT. We can use a utility such as
Copy][Plus to determine the load location and length of BREAKOUT; this turns out to be $800 and
$2000 respectively. Since the total size of our program is only 8KB, we can also include the F8 ROM.

So we can now create a ROX image in three easy steps:

 1. BLOAD IMAGE TEMPLATE WITH F8 (Loads at $1000-$3FFF)
 2. BLOAD BREAKOUT, A$1000 (Loads into bottom of image)
 3. BSAVE BREAKOUT.IMG, A$1000, L$3000

Since our template defaults to a starting address of $800, we don’t need to make any modifications to
the Loader. This image could now be loaded into ROMX using the P)ick command or M)anually
(after BLOADing at $3000). But let’s test it out first in the LC (make sure INTEGER or Applesoft
has already been loaded there):

 CALL -151 (Go into Monitor)
 CO83 C083 (Enable writing to Language Card)
 D000<1000.3FFFM (Move our image into Language Card)
 F700G (Execute our Launch code)

If all went well, the Launch code would have moved the Breakout program into RAM at $800 and it
would have started running.

EXAMPLE #2

Let’s see if we can do the same thing with the CHIPOUT program also found on the tutorial disk.
This program loads at $07FD and is $1803 bytes long. So it will certainly fit into our ROM. But since
the start address is not $800, we will have to make a couple of changes. After loading the Image
Template, we need to BLOAD the program so that the start address is in the first page of the image.
The Loader routine only copies full pages of memory (256 bytes) at a time (just think about the first
two digits of a hex address). So we will end up loading $0700-$07FC or 253 bytes that we will copy
back but not really use. In this case, these bytes are in the screen RAM area so when the Loader
restores them, we are likely to see some random characters written to the screen just before the
program launches. No harm, but watch for it when you launch the image either from the LC or ROM.
So here are the steps to add the program to our template:

 1. BLOAD IMAGE TEMPLATE WITH F8 (Loads at $1000-$3FFF)
 2. BLOAD CHIPOUT, A$10FD (Loads into bottom of image w/offset)

Before we save the image, we need to modify the Launch routine:

 CALL -151 (Go into Monitor)
 3706:07 (Change TARGET hi-byte to $07)
 370B:FD 07 (Change JMP address to $07FD)

Now we can save the image to disk:

 BSAVE CHIPOUT.ROM, A$1000, L$3000

And to test out on the LC:

 CO83 C083 (Enable writing to Language Card)
 BLOAD CHIPOUT.ROM, A$D000 (Move our image into Language Card)
 F700G (Execute our Launch code)

ADDITIONAL NOTES

When first trying to get a program to run from ROM, it is often helpful to set the RESET vector to
$FF59 (the Monitor Entry point, assuming you are keeping the F8 ROM). When the image is loaded
using ROMX, it will immediately enter the Monitor (* prompt). Then you can examine the ROM
contents, execute the loader routine, and make changes or set breakpoints to the code in RAM.

Also note that the ROM images you create this way can be directly used with most emulators. First
you need to extract the image from the Apple environment into a file on the host computer.
CiderPress and AppleCommander are two great tools for doing this. Then you tell the Emulator to use
this file as its boot ROM. For example in Virtual II on the Mac, you launch a new machine, click the
Setup button, and select ROM memory under the Components section. You can then pick “Use
specific ROM” and select your image file (make sure it ends with “.ROM”). When you hit Restart the
virtual machine will start up with your image. With Applewin, you can use the -rom option on the
command line when you launch the program.

Here’s another trick that might be helpful if your program just needs a little more space. If you
examine the F8 monitor code, you will find that the first $70 bytes contain routines used to plot
graphics. If your program does not use these, then the loader code could be moved there leaving the
entire $D000-$F800 space available for your program. The IMAGE TEMPLATE 12K file goes even
further giving you almost 12K of program space ($D000-$FEFF) at the expense of the entire Monitor
ROM. So make sure your program does not attempt to make any calls there.

Finally, if you make a really cool image that you would like to share with others, please contribute to
theRomExchange.com. Before sending however, please add some rmx metadata to describe your
image:

 1. BLOAD <your great image> ,A$3000 (Loads at $3000-$5FFF)
 2. RUN INFO GEN 3 (from the ROMX Utilities disk)
 3. Enter Description and Additional Info (Adds metadata to image)
 4. BSAVE <image name>.RMX, A$3000, L$3100 (Saves complete rmx image)

TEMPLATE LISTINGS

IMAGE TEMPLATE WITH F8
 1 ; ROMX IMAGE TEMPLATE CODE
 2 ; FILE: IMAGE TEMPLATE WITH F8
 3
 4 RAM_LOC EQU $0800
 5 INIT EQU $FB2F
 6
 7 ORG $1000 ;Start of Image
 8
1000: 00 00 00 9 DS $3700-* ;Room for our program
 10
3700: 20 28 F7 11 Launch JSR Setup+$C000
3703: A2 D0 12 LDX #/$D000 ;SOURCE hi-byte
3705: A9 08 13 LDA #/RAM_LOC ;TARGET hi-byte
3707: 20 0D F7 14 JSR CopyLp+$C000
 15
370A: 4C 00 08 16 JMP RAM_LOC ;Program entry point
 17
370D: 85 03 18 CopyLp STA $03
370F: A9 00 19 LDA #$00
3711: 85 00 20 STA $00
3713: 85 02 21 STA $02
3715: 86 01 22 CpyLp2 STX $01
3717: A0 00 23 LDY #$00
 24
3719: B1 00 25 :2 LDA ($00),Y ;do 256 bytes
371B: 91 02 26 STA ($02),Y
371D: C8 27 INY
371E: D0 F9 28 BNE :2
3720: E6 03 29 INC $03
3722: E8 30 INX
3723: E0 FF 31 SrcEnd CPX #/$FF00 ;END OF SOURCE hi-byte
3725: D0 EE 32 BNE CpyLp2 ;do xx pages
3727: 60 33 RTS
 34
3728: D8 35 Setup CLD ;Do what we need to init computer
3729: 20 2F FB 36 JSR INIT ;Set up screen softswitches
372C: 60 37 RTS
 38
372D: 00 00 00 39 DS $3FFC-* ;F8 ROM moved into $3800-$3FFB
 40
3FFC: 00 F7 41 DA Launch+$C000 ;RESET vector ($FF00)
3FFE: 40 FA 42 DA $FA40 ;IRQ vector (not used)
 43

IMAGE TEMPLATE 12K
Change line 9 to:

1000: 00 00 00 9 DS $3F00-* ;Room for our program

PART II – ADDITIONAL OPTIONS

If your program has a Quit option or exits after performing its task, you may wish to return to the
ROMX menu when the program is finished. From the ROMX API Guide, we know that we can
enable the firmware with the following sequence:

 BIT $CACA
 BIT $CACA
 BIT $CAFE

At this point, with the ROMX firmware active we can either boot another image by executing:

 BIT $CFEn (n=bank to launch)
 JMP (FFFC) (Jump to RESET vector location in boot image)

Or we can re-launch the ROMX menu with:

 JMP $DFD0 (Jump to ROMX Menu loader)

Launching the ROMX menu this way will simulate a power-on condition, with the normal countdown
to activate the default bank. We’ll show you later how to manually initialize the firmware and drop
into the menu without using the countdown feature.

DEALING WITH LARGER PROGRAMS

When your program is larger than 12K, there are several techniques that can be tried to reduce the
size. Obviously, if this is your own program you will already know what areas and possible shortcuts
you can use to reduce its memory footprint. If you are trying to squeeze someone else’s code into
ROM then here are some things to look for.

Scan the code for cleartext ASCII strings, probably with high-bit set per Apple standards. Many of
these will be warning or informational messages that might be ripe for shortening. For example, if the
program displays a full screen intro page with credits, copyright info, etc. you might be able to
remove this completely or at least change the strings to just a few characters.

The Apple II Memory Test V1.4RX program in the Image section of the theRomExchange.com was
originally over 14K (14688 to be exact). And it used several routines in the F8 ROM. The F8 code
plus the Loader routine added another 300 bytes, which made it about 2700 bytes too large. But the
program had a very extensive help system that provided lengthy descriptions of every command. By
removing or shortening these strings, I was able to easily save this amount and more. Quite a
significant reduction to make it fit into our available space!

When looking to shorten or eliminate strings, you will need to examine where and how they are used.
By looking at the starting address of a string you can usually find where in the program that string is
being referenced. Hopefully it is used in only one place, but always check to see if that’s the case. If
the particular message is not essential, you can often just remove it along with the code that uses it. If

you want to keep a shortened message instead, you will have to examine the code and/or the string to
determine how the first and last characters are specified. Common methods are to add a length byte to
the beginning of the string, use a zero (or other value) byte to terminate the string, or use the MSB of
the last character as a flag. For example the string “HELLO” might be found in memory as:

 05 C8 C5 CC CC CF (Leading length byte string)
 C8 C5 CC CC CF 00 (Zero terminated string)
 C8 C5 CC CC 4F (MSB terminated string)

Once you discover the technique being used, it will most likely remain consistent throughout the
program. Strings can be used extensively within a program and thus are a good candidate for code
reduction. They can also point to areas of code that might be removed completely if not critical to the
application. If you don’t need cassette read/write, game paddle controls, disk functions, etc. then
finding where in the application such routines reside will make it much easier to eliminate.

If you do end up removing code, beware that you might be altering relative branching offsets or other
absolute addresses. You can check the code around the deletion to see if that’s the case and manually
make changes. But if you need to make large-scale changes then it will be easier to run the code
through a disassembler and create source code that you can later use in your favorite assembler
program. This will take care of many of the addressing issues even if you never fully discover and
annotate all of the source.

When your code is down to just needing a few more small reductions you can look for JSR
instructions followed immediately by an RTS. These four bytes can usually be replaced by a single
JMP instruction to the same address, saving one byte (as long as the RTS in not used elsewhere in the
code). You may be surprised how many bytes you can save this way! And when you fully understand
the code, it is often possible to replace a JMP with a Branch instruction when a certain condition will
always be met. One more byte saved. Early Apple programmers would have loved the new opcodes
found in the 65C02 such as BRA (Branch Always) and more extensive Stack operations, but since
these were not available at the time there is plenty of inefficient code that was needed to perform such
functions.

SPLITTING PROGRAMS INTO MULTIPLE BANKS

When all of the above techniques are insufficient to compact your application into a single bank, the
next step to consider is splitting the code into two or more banks. The first bank can copy up to 12K
of code into RAM. Then it can copy and call a small routine in RAM that switches to another bank
and continues with a second (or more) loader to move the rest of the code into RAM. Or a single
loader routine could be moved into RAM that copies all of the code from each bank sequentially.
After all of the code is copied it is even possible to switch to a standard Applesoft image before
executing the application. That would allow you to count on the F8 (and Applesoft for that matter)
routines being available to your program without taking up space in your images.

This is exactly how our DOS image banks work. We have even included a short warning dialog that
is called if you attempt to launch one of the secondary banks by itself. See the listing below.

 1 ** ROMXDOS **
 2
 3 * Copyright 2000 Jeff Mazur
 4
 5 * V 0.990 INITIAL RELEASE
 6 * V 0.991 Bypass countdown after warning.
 7 * V 0.992 Added tertiary image.
 8
 9 ;V 0.992 ROMXDOS DOS 3.3 IMAGE
 10
 11 BASL EQU $78
 12 BASH EQU BASL+1
 13 RealBank EQU $02A6 ;Bank save for DOS call
 14 RAM_LOC EQU $2000
 15 BANK0 EQU $CFE0
 16 ROM2RAM EQU $C081 ;Enable ROM Read/RAM Write
 17 LCWPROT EQU $C082 ;Write Protect LC
 18 DOSSTART EQU $9D84 ;Assume 48K machine
 19 KYBD EQU $C000 ;Keyboard address
 20 KYBDSTB EQU $C010 ;Keyboard strobe reset
 21 RMXInit EQU $1012 ;ROMX Init (Ver 0.992 and up)
 22 RMXDoMenu EQU $103C ;ROMX DoMenu
 23 RMXStrt EQU $DFD8 ;ROMX Start location
 24
 25 ORG $FB00 ;Runs at $FB00
 27
 28
 29 Launch
 30 *------------------------------
 31 * DISPLAY WARNING
 32 *------------------------------
 33 CLRSCRN
FB00: A9 A0 34 LDA #" " Store spaces to entire screen
FB02: A2 04 35 LDX #/$0400 ;TARGET
FB04: A0 00 36 LDY #0
FB06: 84 00 37 STY $00
FB08: 86 01 38 :1 STX $01
 39
FB0A: 91 00 40 :2 STA ($00),Y
FB0C: C8 41 INY
FB0D: D0 FB 42 BNE :2
FB0F: E8 43 INX
FB10: E0 08 44 CPX #$08 ;END OF TARGET
FB12: D0 F4 45 BNE :1
 46
 47 DispWarn
FB14: A2 04 48 LDX #4 ;4 lines
FB16: 8A 49 :1 TXA
FB17: 20 2B FB 50 JSR PrintOneLine
FB1A: CA 51 DEX
FB1B: 10 F9 52 BPL :1
 53
FB1D: AD 00 C0 54 :2 LDA KYBD

FB20: 10 FB 55 BPL :2
FB22: AD 10 C0 56 LDA KYBDSTB
 57
FB25: 20 42 FF 58 JSR RamCpy
FB28: 4C 50 20 59 JMP Bk2Menu-$DF00
 60
 61 *-----------------------------------
 62 * Print string on given line
 63 * ON ENTRY, A = line# X = msg#
 64 *-----------------------------------
 65 PrintOneLine
FB2B: 20 81 FF 66 JSR BASCALC ;Get start of line
FB2E: 8A 67 TXA ;Get msg#
FB2F: 0A 68 ASL ;multiply by 2
FB30: A8 69 TAY
FB31: B9 EB FB 70 LDA Msg_Add_Tbl,Y
FB34: 85 1E 71 STA $1E
FB36: B9 EC FB 72 LDA Msg_Add_Tbl+1,Y
FB39: 85 1F 73 STA $1F
FB3B: A0 00 74 LDY #0
FB3D: B1 1E 75 :1 LDA ($1E),Y
FB3F: F0 05 76 BEQ :2
FB41: 91 78 77 STA (BASL),Y
FB43: C8 78 INY
FB44: D0 F7 79 BNE :1
FB46: 60 80 :2 RTS
 81
 82
FB47: A0 A0 A0 83 menu01 ASC " THIS IS A DOS IMAGE ",00
FB70: A0 A0 A0 84 menu02 ASC " AND CANNOT BE LAUNCHED ",00
FB99: A0 A0 A0 85 menu03 ASC " ",00
FBC2: A0 A0 A0 86 menu04 ASC " PRESS ANY KEY TO RETURN TO MENU ",00
 87
 88
 89 Msg_Add_Tbl
FBEB: 99 FB 47 90 DW menu03,menu01,menu02,menu03,menu04
 91
 92
 93 ERR *-1/$FF00
FBF5: 00 00 00 94 DS $FF00-*

 95
 96 ********* DOS LOADER ********* Runs at $FF00
 97
 98 DOSLoad
FF00: 20 42 FF 99 JSR RamCpy
FF03: 4C 06 20 100 JMP MyCode-$DF00
 101
 102 *--------------------------------------
 103 * START OF BOOT CODE
 104 *--------------------------------------
 105
 106 MyCode
FF06: A2 FA 107 PASS1 LDX #/$FA00 ;SOURCE

FF08: A9 FB 108 LDA #/$FB00 ;SOURCE END
FF0A: 8D 7A 20 109 STA SrcEnd-$DF00+1
FF0D: A9 03 110 LDA #/$0300 ;TARGET
FF0F: 20 63 20 111 JSR CopyLp-$DF00
 112
FF12: A2 D0 113 PASS2 LDX #/$D000 ;SOURCE
FF14: A9 F3 114 LDA #/$F300 ;SOURCE END
FF16: 8D 7A 20 115 STA SrcEnd-$DF00+1
FF19: A9 9D 116 LDA #/$9D00 ;TARGET (assume 48K)
FF1B: 20 63 20 117 JSR CopyLp-$DF00
 118
FF1E: 20 B1 20 119 BOOT JSR TripleChk-$DF00 ;see if there's more to do
FF21: 20 59 20 120 JSR SelBank0-$DF00 ;Activate BANK 0
FF24: AE A6 02 121 LDX RealBank ;Activate real image
FF27: BD E0 CF 122 LDA BANK0,X
 123
FF2A: D8 124 CLD
FF2B: A9 00 125 LDA #$00 ;Applesoft ONERR flag
FF2D: 85 D8 126 STA $D8
FF2F: A9 FF 127 LDA #$FF ;Integer RUNMODE flag
FF31: 85 D9 128 STA $D9
FF33: 20 84 FE 129 JSR $FE84 ;SETNORM
FF36: 20 2F FB 130 JSR $FB2F ;INIT
FF39: 20 93 FE 131 JSR $FE93 ;SETVID
FF3C: 20 89 FE 132 JSR $FE89 ;SETKBD
 133 ; JSR $FB60 ;HOME & PRINT APPLE][
 134 ; JSR $FBDD ;BELL
FF3F: 4C 84 9D 135 JMP DOSSTART ;DOS COLDSTART
 136
 137 RamCpy
FF42: A0 00 138 LDY #0
FF44: B9 00 FF 139 CpyLp LDA DOSLoad,Y
FF47: 99 00 20 140 STA RAM_LOC,Y
FF4A: C8 141 INY
FF4B: C0 ED 142 CPY #MyCode_End
FF4D: D0 F5 143 BNE CpyLp
FF4F: 60 144 RTS
 145
 146 Bk2Menu
FF50: 20 59 20 147 JSR SelBank0-$DF00 ;Get to Bank 0
FF53: 20 12 10 148 RXInit JSR RMXInit ;Init Firmware
FF56: 4C 3C 10 149 RXMenu JMP RMXDoMenu ;Launch ROMX menu
 150
 151 SelBank0
FF59: 2C CA CA 152 BIT $CACA ;Select Bank 0 from another bank
FF5C: 2C CA CA 153 BIT $CACA
FF5F: 2C FE CA 154 BIT $CAFE
FF62: 60 155 RTS
 156
FF63: 85 03 157 CopyLp STA $03
FF65: A9 00 158 LDA #$00
FF67: 85 00 159 STA $00
FF69: 85 02 160 STA $02
FF6B: 86 01 161 CpyLp2 STX $01
FF6D: A0 00 162 LDY #$00

 163
FF6F: B1 00 164 :2 LDA ($00),Y ;do 256 bytes
FF71: 91 02 165 STA ($02),Y
FF73: C8 166 INY
FF74: D0 F9 167 BNE :2
FF76: E6 03 168 INC $03
FF78: E8 169 INX
FF79: E0 F3 170 SrcEnd CPX #/$F300 ;END OF SOURCE
FF7B: D0 EE 171 BNE CpyLp2 ;do xx pages
FF7D: 60 172 RTS
 173
 174
 175 BASCALC1
FF7E: 18 176 CLC ;Compensate for top menu lines
FF7F: 69 01 177 ADC #1 ;and fall into...
 178
 179 BASCALC
FF81: 48 180 PHA ;CALC BASE ADR IN BASL,H
FF82: 4A 181 LSR ; FOR GIVEN LINE NO
FF83: 29 03 182 AND #$03
FF85: 09 04 183 ORA #$04
FF87: 85 79 184 STA BASH
FF89: 68 185 PLA
FF8A: 29 18 186 AND #$18
FF8C: 90 02 187 BCC BSCLC2
FF8E: 69 7F 188 ADC #$7F
FF90: 85 78 189 BSCLC2 STA BASL
FF92: 0A 190 ASL
FF93: 0A 191 ASL
FF94: 05 78 192 ORA BASL
FF96: 85 78 193 STA BASL
FF98: 60 194 RTS
 195
FF99: C9 B1 196 DecBnk CMP #"1" ;Valid numerical bank?
FF9B: 90 13 197 BLT NotAlpNum
FF9D: C9 BA 198 DecHi CMP #":"
FF9F: B0 04 199 BGE Alpha
FFA1: 38 200 SEC
FFA2: E9 B0 201 SBC #"0" ;Get hex value for bank
FFA4: 60 202 RTS ;and return with 0x01-09
 203
 204 Alpha
 205 ; AND #$DF ;HANDLE LOWER CASE
FFA5: C9 C1 206 CMP #"A" ;Valid alpha bank?
FFA7: 90 07 207 BLT NotAlpNum
FFA9: C9 C7 208 CMP #"G"
FFAB: B0 03 209 BGE NotAlpNum
FFAD: 38 210 SEC ;Get hex value for bank
FFAE: E9 B7 211 SBC #"7" ;and return with 0x0A-0F
 212
 213 NotAlpNum
FFB0: 60 214 RTS ;return with original key
 215
 216
 217 TripleChk

FFB1: AD A6 02 218 LDA RealBank ;recall original image
FFB4: 20 7E 20 219 JSR BASCALC1-$DF00
 220
 221 DOS_Check
FFB7: A0 24 222 LDY #36 ;position 37 for DOS BANK
FFB9: B1 78 223 LDA (BASL),Y ;Get DOS bank
FFBB: 20 99 20 224 JSR DecBnk-$DF00
FFBE: 20 7E 20 225 JSR BASCALC1-$DF00
FFC1: A0 22 226 LDY #34 ;position 37 for 3rd BANK
FFC3: B1 78 227 LDA (BASL),Y ;Check for 3rd bank
FFC5: C9 A6 228 CMP #"&"
FFC7: D0 23 229 BNE Finish
FFC9: C8 230 INY
FFCA: C8 231 INY
FFCB: B1 78 232 LDA (BASL),Y ;Get 3rd bank
FFCD: 20 99 20 233 JSR DecBnk-$DF00
FFD0: AA 234 TAX
FFD1: 20 59 20 235 JSR SelBank0-$DF00 ;Get back to bank 0
FFD4: BD E0 CF 236 LDA BANK0,X ;Activate 3rd bank
FFD7: AD 81 C0 237 LDA ROM2RAM ;Enable LC Write
FFDA: AD 81 C0 238 LDA ROM2RAM
 239
FFDD: A2 D0 240 PASS3 LDX #/$D000 ;SOURCE
FFDF: A9 00 241 LDA #/$0000 ;SOURCE END
FFE1: 8D 7A 20 242 STA SrcEnd-$DF00+1
FFE4: A9 D0 243 LDA #/$D000 ;TARGET
FFE6: 20 63 20 244 JSR CopyLp-$DF00
 245
FFE9: 2C 82 C0 246 BIT LCWPROT ;Write Protect LC
 247
FFEC: 60 248 Finish RTS
 249
 250
 251 MyCode_End
 252
 253
 254 ERR *-1/$FFFC
FFED: 00 00 00 255 DS $FFFC-*
 256
FFFC: 00 FB 257 DA Launch ;RESET Vector
FFFE: 00 FF 258 DA DOSLoad ;NMI Vector
 259

When a bank is selected in ROMX that has the “&Dn” command in its description, it will
automatically store the bank selected in address $02A6. Then it will enable bank “n” and launch its
code via the vector at location $FFFE/F (normally used for the BRK vector). If bank “n” is
mistakenly launched directly, it will begin execution at the normal Reset vector $FFFC/D. This can
be used to display a warning message and return to the ROMX menu.

Here is a detailed breakdown of the code:

Lines 11-23 set up the equates used by the remaining code. Note the RealBank location at $02A6 and
the firmware entry points RMXInit and RMXDoMenu, which initialize and launch the ROMX
firmware respectively.

When the image is called via the &Dn command, it will begin execution at the address pointed to by
FFFE, or from line 258, $FF00 (DOSLoad). This routine executes at line 98 and starts by copying the
loader code itself from FFF0-FFEC into RAM at $2000. Then at line 100 it JMPs to its RAM copy
starting at $2006 (MyCode). This then copies DOS and the page 3 vectors in two passes. Next it
checks to see if there is a link to load a third image into the Language Card (TripleChk). If so, it
activates that bank, enables writing to the Language Card, and copies the image into the card. After
that the card is write protected.

The boot code continues on line 120 by activating bank 0 so that it can select the original RealBank
image. Then, assuming that image contains the Autostart F8 Monitor, we perform the basic system
initialization, optionally print APPLE][followed by a beep, and then drop into the DOS coldstart
entry to continue booting and linking to DOS.

On the other hand, if the image is called directly from the ROMX menu, it will begin execution at the
address pointed to by FFFC, or from line 257, $FB00 (Launch). This code begins with lines 34-45
which store a blank or space character at each location from $400-$7FF, effectively clearing the
screen. Then at lines 48-52 we display 4 lines of text, which puts up the warning message. Lines 54-
56 wait for a keypress and then line 58 copies the launch code into RAM just so we can jump back to
the ROMX menu.

Lines 61-80 comprise a subroutine (lifted from the ROMX firmware) to print a single line of text on
the screen. This is used with the strings and address table in lines 83-90. The Bk2Menu routine
starting at line 146 handles the return to the ROMX menu. It does this by activating the ROMX
firmware in bank 0, initializing the code, and then jumping to the entry point where it draws the
menu. Note that we would normally need to move the ROMX firmware from ROM to RAM as well.
But since we know that we got here from that code in the first place, it is safe to assume it is still in
RAM.

CREATING IMAGES THAT WORK WITH ACCELERATORS

If you want your image to work correctly when running with an accelerator, there are a few extra
steps to take. The most important is that accesses to memory may be bypassed by the accelerator’s
built-in RAM or cache. This can cause issues with the ROMX softswitches and previously loaded
data from the ROM space from other banks, including the firmware.

For example, whenever you switch back from one bank to the firmware in bank 0, you need to
execute the CACA CACA CAFE sequence. While the accelerator is doing its job trying to speed
things up it may see no need to actually access the “memory” location $CACA twice in a row. So
your code may not perform as expected in this case. There are several ways to remedy this situation:

1. Temporarily tell the accelerator to slow down and resume normal access
2. Explicitly disable the accelerator until your code is complete; then re-enable it.
3. Flush the accelerator’s cache or RAM to cause it to re-read the memory address.

In most cases option 1 will suffice. All accelerators need a way to resume normal operation when
accessing a Disk II drive since its code is driven by software timing loops. Because of this we can
always pick a slot (usually 6) where a disk controller would sit and access its ROM or I/O space
briefly. A BIT $C0E0 instruction will usually do the trick. This will cause the accelerator to slow
down typically for about 50 mS.

Finally, with respect to the ZIP CHIPs, it is also possible that the internal cache will hold data from
other banks that were switched in during the launch process. This will cause unexpected results when
run with the accelerator on but will work fine when it is disabled. The solution for this problem is to
completely flush the 8K of cache on the ZIP CHIP. The code below is a straightforward way to do
this. You would probably execute this near the start of your image loader routine to ensure that you
copy the desired data from the ROM space into RAM.

